Introducing SMA to Australian Runways

Greg White
gwhite2@usc.edu.au | 0400 218 048
Acknowledgements

- Flight Lieutenant Sean (Jamo) Jamieson
 - RAAF Civil Engineer
 - Seconded to USC for 12 months
 - Master of Science (Civil Engineering)
 - This is Jamo’s project

- Industry supporters
SMA for runways

- Australia traditionally used dense graded grooved Marshall asphalt
- Grooves are 6 mm (0.25 in) by 6 mm and 32 mm (1.25 in) apart
- Minimise the impact of ‘wet’ conditions on skid resistance
- Just like the USA and the UK (different grooves)
- The rest of the world does not
 - BBA
 - SMA
 - OGFC
- Should Australia continue to do so?
SMA for runways

• SMA in Australia
 – Common for roads in most States
 – Cairns International
 • 1999 10 mm and 14 mm SMA
 • Still in place on aprons
 • 2005 international apron SMA 14
 – Sydney International
 • 1999 trials on a taxiway
 • Unsuccessful - very coarse, uneven surface finish
 • Likely due to construction issues
 – No other known use on Australian airports
SMA for runways

• Performance-based airport asphalt specification
 – Developed in 2017
 – Maintains the basis of dense graded volumetrics
 – Contractor selects the binder
 – To achieve performance properties
 • Deformation
 • Fracture
 • Moisture
 – Contractor warrants performance
• Used on five runway resurfacings
• Provides a basis for alternate volumetrics/mixture types
SMA for runways

Shearing

Groove closure

Top-down cracking
SMA for runways

<table>
<thead>
<tr>
<th>Statistic</th>
<th>USA</th>
<th>Australia</th>
<th>AU/US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland area</td>
<td>9.1 million km²</td>
<td>7.7 million km²</td>
<td>85%</td>
</tr>
<tr>
<td>Population</td>
<td>325 million</td>
<td>25 million</td>
<td>8%</td>
</tr>
<tr>
<td>GDP</td>
<td>US$ 19.4 trillion</td>
<td>US$ 1.3 trillion</td>
<td>7%</td>
</tr>
<tr>
<td>Interstate length</td>
<td>92,000 km</td>
<td>16,000 km</td>
<td>17%</td>
</tr>
<tr>
<td>States</td>
<td>50</td>
<td>6</td>
<td>12%</td>
</tr>
<tr>
<td>Concrete runways</td>
<td>Lots</td>
<td>None</td>
<td>∞</td>
</tr>
</tbody>
</table>
SMA for runways

Table: Mainland Area Comparison

<table>
<thead>
<tr>
<th>Statistic</th>
<th>USA</th>
<th>Australia</th>
<th>AU/US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland area</td>
<td>9.1 million km²</td>
<td>7.7 million km²</td>
<td>85%</td>
</tr>
<tr>
<td>Population</td>
<td>325 million</td>
<td>25 million</td>
<td>8%</td>
</tr>
<tr>
<td>GDP</td>
<td>US$ 19.4 trillion</td>
<td>US$ 1.3 trillion</td>
<td>7%</td>
</tr>
<tr>
<td>Interstate length</td>
<td>92,000 km</td>
<td>16,000 km</td>
<td>17%</td>
</tr>
<tr>
<td>States</td>
<td>50</td>
<td>6</td>
<td>12%</td>
</tr>
<tr>
<td>Concrete runways</td>
<td>Lots</td>
<td>None</td>
<td>∞</td>
</tr>
</tbody>
</table>

BITUMEN = ASPHALT (LIQUID)

ASPHALT = CONCRETE (MIXTURE)
SMA for runways

<table>
<thead>
<tr>
<th>X<sup>th</sup> busiest airport</th>
<th>USA</th>
<th></th>
<th>Australia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Airport</td>
<td>Passengers</td>
<td>Airport</td>
<td>Passengers</td>
</tr>
<tr>
<td>1</td>
<td>Atlanta</td>
<td>50,000,000</td>
<td>Sydney</td>
<td>43,000,000</td>
</tr>
<tr>
<td>3</td>
<td>Chicago</td>
<td>39,000,000</td>
<td>Brisbane</td>
<td>23,000,000</td>
</tr>
<tr>
<td>6</td>
<td>New York</td>
<td>30,000,000</td>
<td>Gold Coast</td>
<td>6,000,000</td>
</tr>
<tr>
<td>10</td>
<td>Charlotte</td>
<td>22,000,000</td>
<td>Darwin</td>
<td>2,000,000</td>
</tr>
<tr>
<td>20</td>
<td>Philadelphia</td>
<td>15,000,000</td>
<td>Port Headland</td>
<td>500,000</td>
</tr>
<tr>
<td>50</td>
<td>Columbus</td>
<td>4,000,000</td>
<td>Olympic Dam</td>
<td>74,000</td>
</tr>
</tbody>
</table>
SMA for runways

- Aircraft skid resistance
 - Internationally regulated
 - International recommendations are mandated in Australia
 - All runways (regardless of size) must
 - Exceed 1 mm surface texture, or
 - Exceed minimum friction values, or
 - Groove the surface

- Dense graded
 - 0.4-0.6 mm surface texture
 - Marginal friction values
 - So the only choice is grooving
SMA for runways

- **Grooves**
 - Cost $500-800 k (in a $6-10 M resurfacing)
 - Takes 4-6 weeks of nightly closures
 - Increase rubber build-up on touch-down
 - Complicate preservation and other maintenance
 - Grooves can close
 - Under slow moving tyres
 - Moving parallel to grooves
 - High tyre pressure
 - During hot weather
 - Can not be re-opened or re-sawn
SMA for runways

• Desire for ungrooved runways
• Other countries use them
 – Norway – SMA
 – France – BBA (gap)
 – China – SMA
 – Germany – SMA/OGFC (open)
• More than 40 runways in China, including Beijing
• But to avoid grooving it must
 – Achieve 1 mm surface texture, or
 – Achieve and maintain minimum friction
SMA for runways
SMA for runways

- Process for introducing SMA as an ungrooved runway surface
 - Collaborative effort
 - Based on Performance-based specification
 - Volumetric changes
 - Other associated changes

- Validation process
 - Mixtures in four labs
 - Using four different aggregate sources
 - But the same bituminous binder
 - Field trial for texture/friction measurement
SMA for runways

<table>
<thead>
<tr>
<th>Physical Requirement</th>
<th>Protects Against</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformation resistance</td>
<td>Groove closure</td>
<td>Copper wheel tracking</td>
</tr>
<tr>
<td></td>
<td>Rutting</td>
<td>(65°C and 10,000 passes)</td>
</tr>
<tr>
<td></td>
<td>Shearing / shoving</td>
<td></td>
</tr>
<tr>
<td>Fracture Resistance</td>
<td>Top down cracking</td>
<td>Four-point bending</td>
</tr>
<tr>
<td></td>
<td>Fatigue cracking</td>
<td>(20°C and 200µε)</td>
</tr>
<tr>
<td>Durability</td>
<td>Erosion and FOD</td>
<td>Established volumetrics</td>
</tr>
<tr>
<td></td>
<td>Asphalt stripping</td>
<td>Modified Lottman (TSR)</td>
</tr>
</tbody>
</table>
SMA for runways
SMA for runways

• Two mixtures
 – Chinese SMA 13
 – German SMA 11

• Performance tests
 – Deformation
 – Fracture
 – Moisture

• Plus
 – Cantabro losses
 – Surface texture
SMA for runways

- Field trial
 - Taxiway at RAAF airfield near Brisbane
 - Two paver runs (joints)
 - 100 m long each (friction)
 - Scheduled for 11 November

- Outcome
 - Texture and friction
 - Heavy aircraft loading
 - Side-by-side dense graded

- Monitor over coming years
SMA for runways

- Implementation
 - Publish
 - Promote
 - Educate
- Performance-based Specification
- Full-scale resurfacing
 - Regional airport
 - Medium airport
 - Significant airport
- Ongoing monitoring
SMA for runways

- Other things we are working on
 - Alternates to flexural beams for concrete compliance
 - Sprayed sealing for regional airports
 - Foamed bitumen stabilisation of marginal materials
 - Non-destructive testing for strength rating
 - Accelerated asphalt aging box and test
 - Synthetic binders for asphalt
 - Reflection crack mitigation test device
 - Ravelling resistance test
 - RAP in airport asphalt
 - Recycled soft plastic for binder modification
THANKYOU