Case Study: Long-term Performance of SMA Pavements in Washington State

Shenghua Wu, Ph.D., LEED AP
Assistant Professor, University of South Alabama

Kevin Littleton, PE
Washington State Department of Transportation

1st International Conference on Stone Matrix Asphalt, Atlanta GA
Nov 6, 2018
Outline

• Introduction
• Project Information
• Research Scope
• Results of SMA and HMA Comparison
 • Field Performance
 • Field Cores Mixture Properties
 • Extracted Binder Properties
• Conclusions and Future Study
Introduction

• SMA is widely used in northern and central Europe for over 25 years.

• In U.S., some studies in MD and GA showed: SMA performs well against rutting and roughness for periods exceeding 10 years.
 ✓ Stone to stone contact
 ✓ High asphalt content; Polymer modified binder

• National specifications: AASHTO R46, AASHTO M325

• State’s good experience is critical for successful implementation of SMA.

• WA’s experience (not so good at the beginning):
 ✓ 1999: SR 524 mix design construction issue
 ✓ 2000: I-90 inadequate control over mix production
Project Information

- Eastern Washington: dry-freeze
- I-90: from SR 21 to Ritzville; AADT- 38,300; paved in 2001
- SMA: 12.5-mm NMAS, PG 76-28
- HMA: 12.5-mm NMAS, PG 64-28
- Both on WB lanes, overlay thickness 63.5 mm
Research Objective

• Investigate the long-term performance of SMA pavement as compared to control HMA pavement

Field Performance

Material Property

• WSPMS
 - Pavement structural condition (PSC): cracking
 - Pavement rutting condition (PRC): rutting
 - Pavement profile condition (PCC): roughness
• Field inspection

Field cores
 - Mixtures testing
• Binder extraction
• Aggregate gradation
• Binder Recovery
 - Binder testing
Material Characterization: Mixture

<table>
<thead>
<tr>
<th>Mixture Test</th>
<th>IDT Dynamic Modulus/Creep Compliance</th>
<th>Fatigue-IDT Fracture at Room Temp</th>
<th>Thermal Cracking-IDT Fracture at Low Temp</th>
<th>Studded Tire Wear Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Conditions</td>
<td>Temp.: -20, -10, 0, 10, 20, 30°C; Frequency: 20, 10, 5, 1, 0.1, 0.01 Hz Duration: 100 seconds</td>
<td>Temp.: 20°C Loading rate: 50.8 mm/min</td>
<td>Temp.: -10°C Loading rate: 2.54 mm/min</td>
<td>Temp.: room Temperature: 690 kPa Speed: 140 rpm Duration: 2 min</td>
</tr>
<tr>
<td>Material Properties</td>
<td>Dynamic modulus; Creep compliance</td>
<td>IDT strength; Fracture work density; Horizontal failure strain</td>
<td>IDT strength; Fracture work density</td>
<td>Mass loss</td>
</tr>
</tbody>
</table>
Material Characterization: Asphalt Binder

<table>
<thead>
<tr>
<th>Binder Test</th>
<th>Performance Grading (PG)</th>
<th>Rutting: MSCR</th>
<th>Fatigue: Monotonic at Room Temp</th>
<th>Thermal Cracking: Monotonic at Low Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Conditions</td>
<td>Different temp depending on the test (DSR, BBR)</td>
<td>Stress: 0.1, 3.2 kPa</td>
<td>Temp.: 20ºC</td>
<td>Temp.: 5ºC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temp.:</td>
<td>Shear rate: 0.3 s⁻¹</td>
<td>Shear strain rate: 0.01 s⁻¹</td>
</tr>
<tr>
<td>Material Properties</td>
<td>PG; BBR stiffness; m-value</td>
<td>Jnr₀.₁, Jnr₃.₂; R₀.₁, R₃.₂</td>
<td>Maximum stress; Fracture energy; Failure strain</td>
<td>Maximum stress; Fracture energy; Failure strain</td>
</tr>
<tr>
<td>References/Standards</td>
<td>AASHTO MP1/T240/T313</td>
<td>AASHTO T350</td>
<td>Shen et al. 2017</td>
<td>Wu 2017; Shen et al. 2017</td>
</tr>
</tbody>
</table>

![Peak Stress (Strength)](image)

- **Shear Stress**
- **Fracture Energy**
- **Shear Failure Strain**
Outline

• Introduction
• Project Information
• Research Scope
• Results of SMA and HMA Comparison
 • Field Performance
 • Field Cores Mixture Properties
 • Extracted Binder Properties
• Conclusions and Future Study
Field Performance

SMA Performance

HMA Performance (Note: HMA was patched in 2008)

Field Inspection

<table>
<thead>
<tr>
<th>Section</th>
<th>Cracking</th>
<th>Rutting</th>
<th>Rut Depth, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>74</td>
<td>61</td>
<td>7.1</td>
</tr>
<tr>
<td>SMA</td>
<td>80</td>
<td>88</td>
<td>5.8</td>
</tr>
</tbody>
</table>
Overall, HMA E* 20% higher than SMA E*.

SMA is more flexible than HMA.
Creep Compliance

- Overall, HMA shows lower creep compliance than SMA.
- SMA gives a better ability to relax stress, and thus better thermal cracking resistance.
Studded Tire Wear Test Result

- No significant difference in mass loss
- Comparable wear resistance

<table>
<thead>
<tr>
<th></th>
<th>Average Mass Loss, g</th>
<th>Standard Deviation, g</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 HMA specimens</td>
<td>2.7</td>
<td>1.46</td>
<td>0.73 > α=0.05</td>
</tr>
<tr>
<td>12 SMA specimens</td>
<td>3.3</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>
IDT Test Results

<table>
<thead>
<tr>
<th>Test Condition</th>
<th>Parameters</th>
<th>HMA</th>
<th>SMA</th>
<th>HMA – SMA, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>IDT Strength, kPa</td>
<td>2992.3</td>
<td>297.2</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>Fracture Work Density, kPa</td>
<td>148.9</td>
<td>24.8</td>
<td>-32.5</td>
</tr>
<tr>
<td></td>
<td>Horizontal Failure Strain</td>
<td>0.0060</td>
<td>0.0004</td>
<td>-37.5</td>
</tr>
<tr>
<td>-10°C</td>
<td>IDT Strength, kPa</td>
<td>4465.0</td>
<td>369.6</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Fracture Work Density, kPa</td>
<td>82.0</td>
<td>11.0</td>
<td>-31.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SMA performs **better** than HMA for **bottom-up and top-down cracking resistance**, as well as **thermal cracking resistance**.
Aggregate Gradation Test Result

Graph
![Graph showing passing percentage against sieve size raised to 0.45 power (mm).](image)

Table

<table>
<thead>
<tr>
<th>Material</th>
<th>In-place Measured Asphalt Content, %</th>
<th>Designed Asphalt Content, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>HMA</td>
<td>5.6</td>
<td>5.44</td>
</tr>
</tbody>
</table>
Binder PG Test Results

<table>
<thead>
<tr>
<th></th>
<th>Original PG</th>
<th>Measured True PG</th>
<th>PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>64-28</td>
<td>73.3-24.4</td>
<td>70-22</td>
</tr>
<tr>
<td>SMA</td>
<td>76-28</td>
<td>81.8-29.3</td>
<td>76-28</td>
</tr>
</tbody>
</table>

- SMA shows better resistance to rutting.
- SMA slows down oxidation possibly due to a thicker asphalt film.

Binder MSCR Test Results

- SMA binder shows better resistance to rutting.
DSR Monotonic Fracture Test Result

20°C

- **Shear Stress, kPa**
 - SMA: 1446
 - HMA: 1256
 - SMA – HMA, %: 15
- **Fracture Energy, kPa**
 - SMA: 10495
 - HMA: 1930
 - SMA – HMA, %: 444
- **Failure Strain**
 - SMA: 10
 - HMA: 2
 - SMA – HMA, %: 443

5°C

- **Shear Stress, kPa**
 - SMA: 2410
 - HMA: 4144
 - SMA – HMA, %: -42
- **Fracture Energy, kPa**
 - SMA: 5275
 - HMA: 5082
 - SMA – HMA, %: 4
- **Failure Strain**
 - SMA: 3
 - HMA: 1
 - SMA – HMA, %: 85
Outline

• Introduction
• Project Information
• Research Scope
• Results of SMA and HMA Comparison
 • Field Performance
 • Field Cores Mixture Properties
 • Extracted Binder Properties
• Conclusions and Future Study
Conclusions

• SMA pavement exhibited better long-term field performance than HMA control pavement.

• Field SMA field cores indicated:
 ✓ Lower E^* and higher creep compliance
 ✓ Better resistance to rutting
 ✓ Comparable resistance to studded tire wear
 ✓ Better resistance to bottom-up and top-down fatigue cracking
 ✓ Better thermal cracking resistance

• Field-extracted SMA binder indicated:
 ✓ Slower oxidation rate due to a thicker film thickness
 ✓ Better rutting resistance
 ✓ Better fatigue and thermal cracking resistance
Future Study:
Balanced Mix Concept for SMA

Too Soft

Too Brittle

(Credit: Mr. David Lippert)
Balanced Mix Design Concept for SMA

Low Temperature Cracking

Fatigue/Block/Other Forms of Cracking

Permanent Deformation

-40°C -20°C 20°C 40°C

(Credit: Dr. Imad Al-Qadi)
SMA Pavement with Sustainability Considerations

- End-of-life
- Preservation, Maintenance, & Rehabilitation
- Use
- Construction
- Design
- Material Production

Environmental
Social
Economic
Future Study

• Include more case studies with varying traffic, environmental and other factors to draw relatively conclusive decisions.

• Further evaluation on the effects of aggregate gradation and binder PG on the difference performance.
Acknowledgements

• Washington State Department of Transportation (WSDOT)

• Pacific Northwest Transportation Consortium (PacTrans)

• Washington Center for Asphalt Technology (WCAT), WSU

• Dr. Haifang Wen, Mr. Skyler Chaney, Dr. Steve Muench

Citation

Thank You!
Any questions?

Contact: Dr. Shenghua Wu
Email: shenghuawu@southalabama.edu